

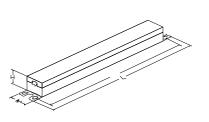
Electrical Specifications

ICN-2M32-MC@120V			
Brand Name	CENTIUM MICRO CAN		
Ballast Type	Electronic		
Starting Method	Instant Start		
Lamp Connection	Series		
Input Voltage	120-277		
Input Frequency	50/60 HZ		
Status	Active		

Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F14T5	2	14	32/00	0.30	36	1.05	10	0.98	1.7	2.92
F17T8	2	17	0/-18	0.26	31	0.88	10	0.98	1.7	2.84
F21T5	2	21	32/00	0.42	50	1.05	10	0.98	1.7	2.10
F25T8	2	25	0/-18	0.37	44	0.88	10	0.98	1.7	2.00
F28T5	2	28	32/00	0.57	68	1.05	10	0.98	1.7	1.54
* F32T8	2	32	0/-18	0.50	59	0.88	10	0.98	1.7	1.49
F32T8/ES (30W)	2	30	0/-18	0.45	54	0.88	10	0.98	1.7	1.63

Wiring Diagram

Diag. 64


The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

Standard Lead Length (inches)

in.	cm.
25	63.5
25	63.5
31	78.7
37	94
	0
	0
	0
	25 25 31

,		
	in.	cm.
Yellow/Blue		0
Blue/White		0
Brown		0
Orange		0
Orange/Black		0
Black/White		0
Red/White		0

Enclosure

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.08 "	1.05 "	8.91 "
9 1/2	1 2/25	1 1/20	8 91/100
24.1 cm	2.7 cm	2.7 cm	22.6 cm

Revised 02/22/2005

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

Electrical Specifications

ICN-2M32-MC@120V			
Brand Name	CENTIUM MICRO CAN		
Ballast Type	Electronic		
Starting Method	Instant Start		
Lamp Connection	Series		
Input Voltage	120-277		
Input Frequency	50/60 HZ		
Status	Active		

Notes:

Section I - Physical Characteristics

- 1.1 Ballast shall be physically interchangeable with standard electromagnetic or standard electronic ballasts, where applicable.
- 1.2 Ballast shall be provided with integral leads color-coded per ANSI C82.11.

Section II - Performance Requirements

- 2.1 Ballast shall be Instant Start.
- 2.2 Ballast shall contain auto restart circuitry in order to restart lamps without resetting power.
- 2.3 Ballast shall operate from 50/60 Hz input source of 120V or 277V with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast. IntelliVolt models shall operate from 50/60 Hz input source of 120V through 277V with sustained variations of +/- 10% (voltage and frequency) with no damage to the ballast.
- 2.4 Ballast shall be high frequency electronic type and operate lamps at a frequency above 42 kHz to avoid interference with infrared devices and eliminate visible flicker.
- 2.5 Ballast shall have a Power Factor greater than 0.98 for primary lamp.
- 2.6 Ballast shall have a minimum ballast factor for primary lamp application as follows: 0.75 for Low Watt, 0.85 for Normal Light Output, and 1.20 for High Light.
- 2.7 Ballast shall provide for a Lamp Current Crest Factor of 1.7 or less in accordance with lamp manufacturer recommendations.
- 2.8 Ballast input current shall have Total Harmonic Distortion (THD) of less than 20% for Standard models and THD of less than 10% for Centium models when operated at nominal line voltage with primary lamp.
- 2.9 Ballast shall have a Class A sound rating.
- 2.10 Ballast shall have a minimum starting temperature of -18C (0F) for standard T8 lamps and 16C (60F) for energy-saving T8 lamps.
- 2.11 Ballast shall provide Lamp EOL Protection Circuit.
- 2.12 Ballast shall tolerate sustained open circuit and short circuit output conditions without damage.

Section III - Regulatory Requirements

- 3.1 Ballast shall not contain any Polychlorinated Biphenyl (PCB).
- 3.2 Ballast shall be Underwriters Laboratories (UL) listed, Class P and Type 1 Outdoor; and Canadian Standards Association (CSA) certified where applicable.
- 3.3 Ballast shall comply with ANSI C62.41 Category A for Transient protection.
- 3.4 Ballast shall comply with ANSI C82.11 where applicable.
- 3.5 Ballast shall comply with the requirements of the Federal Communications Commission (FCC) rules and regulations, Title 47 CFR part 18, Non-Consumer (Class A) for EMI/RFI (conducted and radiated).

Section IV - Other

- 4.1 Ballast shall be manufactured in a factory certified to ISO 9002 Quality System Standards.
- 4.2 Ballast shall carry a five-year warranty from date of manufacture against defects in material or workmanship, including replacement, for operation at a maximum case temperature of 70C.
- 4.3 Manufacturer shall have a fifteen-year history of producing electronic ballasts for the North American market.

NOTE: The use of Optanium (IOP) models is recommended to reduce striations in energy-saving T8 lamps (25W, 28W or 30W). Remote or tandem wiring of energy-saving T8 lamps (25W, 28W or 30W) is only recommended for Optanium (IOP) models.

Consult lamp manufacturer for operation of T5 lamps on instant start hallasts

Revised 02/22/2005

Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.